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Abstract

Meshes containing elements with bad quality can result in poorly conditioned sys-
tems of equations that must be solved when using a discretization method, such as
the finite-element method, for solving a partial differential equation. Moreover, such
meshes can lead to poor accuracy in the approximate solution computed. In this paper,
we present a nonlinear fractional program that relocates the vertices of a given mesh
to optimize the average element shape quality as measured by the inverse mean-ratio
metric. To solve the resulting large-scale optimization problems, we apply an efficient
implementation of an inexact Newton algorithm using the conjugate gradient method
with a block Jacobi preconditioner to compute the direction. We show that the block
Jacobi preconditioner is positive definite by proving a general theorem concerning the
convexity of fractional functions, applying this result to components of the inverse mean-
ratio metric, and showing that each block in the preconditioner is invertible. Numerical
results obtained with this special-purpose code on several test meshes are presented
and used to quantify the impact on solution time and memory requirements of using a
modeling language and general-purpose algorithm to solve these problems.

1 Introduction

Discretization methods, such as the finite-element method [8] and the spectral-element
method [38], are common techniques for computing an approximate solution to a partial
differential equation over a given domain. These methods decompose the domain into a
set of elements, triangles or tetrahedra, for example, to produce the mesh used in the
approximation scheme. Techniques such as h-refinement, modifying the size of the elements,
and p-refinement, modifying the polynomial degree of the elements, are typically applied
to improve the accuracy of the approximate solution computed [2]. This paper concerns
a supplementary refinement technique, called r-refinement, that modifies the elements to
improve their quality [5, 6]. This technique is used in conjunction with h- and p-refinement
when solving the partial differential equation.
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Meshes containing bad quality elements are undesirable because the resulting systems
of equations solved can be poorly conditioned, leading to a loss of accuracy, stability, and
efficiency [36]. Furthermore, the accuracy in the resulting approximate solution to the
partial differential equation can be poor [36]. Improving the element quality according to
an appropriate quality metric can have a substantial effect on the total time taken to solve
the partial differential equation. For example, in [18] the problem obtained by applying r-
refinement and topological modifications took over 25% less time to solve than the original
problem.

The use of r-refinement requires both a metric to measure the element quality and a
mechanism to modify the elements. Many metrics have been proposed in the literature
to measure quality based on quantities such as element size, shape, and smoothness; see
[4, 15, 17, 23, 24, 34] and the references therein. This paper concentrates on the inverse
mean-ratio metric [26, 24], a shape-quality metric that measures the distance between a
trial element and an ideal element, an equilateral triangle, for example. An optimization
problem is then solved to minimize the average inverse mean-ratio metric by relocating the
vertex positions [16]. Section 2 discusses the inverse mean-ratio metric for two- and three-
dimensional elements and the resulting nonlinear optimization problem solved to compute
the vertex positions. The objective function for this problem consists of the sum of many
fractional functions and is nonconvex. Moreover, the problem can have a large number of
variables.

Modeling languages, such as AMPL [14] or GAMS [9], offer convenient environments
for specifying and solving optimization problems. These languages are able to generate
large problems; gather data from many sources, including databases and spreadsheets; and
calculate the derivative information required by the solver. An optimization problem to
minimize the average inverse mean-ratio metric for any given mesh can be easily written in
a modeling language and solved by applying a general-purpose code, such as LOQO [39, 40]
or KNITRO [10, 41].

However, it may be inefficient to incorporate such a model into a code that needs to
periodically apply r-refinement either because it is used in conjunction with an adaptive
meshing scheme or because the mesh changes with time [3, 37], since the mesh data would
have to be written to a file, the modeling environment invoked by a system call, and the
results read back into the code from a file. The situation is exacerbated if the code runs
in parallel, since no modeling environments operate in parallel. Furthermore, efficiency is
required in these applications so that the r-refinement does not become the dominant cost
in the overall computation.

Therefore, an efficient special-purpose code to minimize the average inverse mean-ratio
metric for any given mesh was developed. In particular, an inexact Newton method [22, 29]
was developed to solve these large, nonconvex optimization problems, in which the direction
is calculated by applying the conjugate gradient method [32]. A block Jacobi preconditioner
is used to reduce the number of conjugate gradient iterations needed to compute the Newton
direction. Since the objective function is nonconvex, a proof that the preconditioner is
positive definite is required. This proof is provided in Section 3, where a general theorem
on the convexity of fractional functions is developed and applied to components of the
inverse mean-ratio metric, and each block in the preconditioner matrix is then shown to be
invertible.
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Figure 1: Sample good triangular element (left) and bad triangular element (right) when
using the inverse mean-ratio metric referenced to an equilateral triangle.

Translating a model and solver into a special-purpose code and then validating the
result is a time-consuming task recommended only if performance is crucial. Tweaking
the implementation to make the code more efficient is another critical step requiring a
significant time investment. Section 4 discusses the inexact Newton method implemented
and the computational techniques used to improve performance. One technique is to reorder
the input data to obtain better locality of reference and cache performance [12, 21]. This
modification results in a 40% reduction in the overall solution time for the largest meshes
tested. The complete inexact Newton code and example meshes are publicly available for
download from http://www.mcs.anl.gov/~tmunson/codes.

We validated the implementation against equivalent constrained and unconstrained
AMPL models. These models and the data files for the test meshes are available for down-
load from http://www.mcs.anl.gov/~tmunson/models. Results obtained with the inexact
Newton method and those obtained by applying general-purpose optimization codes through
the AMPL modeling language are provided in Section 5. In that section we also quantify
the price paid for the convenience of using a modeling language on our mesh shape-quality
optimization problems in terms of solution time and memory requirements. For the solvers
tested on these mesh shape-quality optimization problems, using a general-purpose code
within the AMPL modeling language is approximately 9.5 to 100 times slower over the
entire set of test meshes and can consume over 100 times the memory. Furthermore, the
impact on performance of reordering the mesh is surprising in that the reordering can in-
crease or decrease the number of iterations taken and can affect the success or failure of the
algorithms.

2 Shape-Quality Optimization

The two-dimensional version of the inverse mean ratio [26] is a shape-quality metric mea-
suring the distance between a triangular element and an ideal element, an isosceles or
equilateral triangle, for example. The description in this section of the inverse mean-ratio
metric referenced to an ideal element follows that of Knupp [23, 24] and Freitag and Knupp
[15].

Let (a, b, c) be the coordinates for the three vertices in the triangular element shown in
Figure 1, where each vertex is an element of !2. We define the incidence matrix A ∈ !2×2
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as
A :=

[
b − a c − a

]
.

That is, the incidence matrix is obtained by computing the edges of the element emanating
from the first vertex in the coordinate list and concatenating them into a square matrix.
Using this definition, we calculate the area of the triangular element as 1

2 |det(A)|, where
det(·) is the determinant of the square matrix argument. Furthermore, if the element has
a nonzero area, then A−1 exists.

Let W denote the incidence matrix for an ideal element. A common choice for the ideal
element is either an isosceles triangle, where W is the identity matrix, or an equilateral
triangle, where

W =

[
1 1

2

0
√

3
2

]
.

The equilateral ideal element is used for the computational results in Section 5. However,
any incidence matrix can be used as long as det(W ) > 0.

Assume an arbitrary element with incidence matrix A and an ideal element with inci-
dence matrix W . The quantity AW−1 is the identity matrix when the trial element and
the ideal element have the same shape and size. If the trial element and the ideal element
have the same shape but different sizes, then AW−1 is a positive multiple of the identity
matrix, where the multiple is the scaling factor.

The inverse mean ratio is then defined as

‖AW−1‖2
F

2|det(AW−1)| .

When the trial element and the ideal element have the same shape with a scaling factor of
σ > 0, then the numerator has a value of 2σ2. This quantity is divided by a term related
to the area of the element in order to make the entire measure independent of scaling.
Furthermore, the denominator has a value of 2σ2 when the trial and ideal elements have
the same shape. The resulting quantity is a dimensionless measure of the shape of the trial
element with respect to the ideal element. The range of the inverse mean ratio is between
one and infinity, where a value greater than one means that the trial element and the ideal
element have different shapes. This metric is invariant to scaling, translating, and rotating
the input values.

A mesh M is defined by a set of vertices V and the elements E that connect these
vertices, where each element is an ordered set of three vertices. The set of vertices on the
boundary of the mesh is denoted by ∂M ; these vertices are fixed for the duration of the
computation. We let x ∈ !2×|V |, where |V | is the number of vertices in the mesh, and
define

Ae(x) =
[

xe2 − xe1 xe3 − xe1

]
W−1,

where e ∈ E with ej denoting the jth vertex of element e, and xi denotes the ith column
of the coordinate matrix x. That is, Ae(x) is the incidence matrix for element e times the
inverse incidence matrix for the ideal element.

Note that det(Ae(x)) can be a positive or negative quantity for each element depending
on how the vertices in the element are labeled; a counterclockwise labeling yields a positive
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Figure 2: Triangular mesh containing two free vertices with an indefinite Hessian matrix.

determinant, whereas a clockwise labeling yields a negative determinant. A consistent
orientation for all of the elements is required for standard discretization methods to work
correctly [8]. To enforce a consistent orientation, we impose the constraint that Ae(x) > 0
for all e ∈ E.

An optimization problem to minimize the average inverse mean ratio over the entire
mesh is then

minx∈%2×|V |
∑

e∈E
‖Ae(x)‖2

F
2 det(Ae(x))

subject to det(Ae(x)) > 0 ∀e ∈ E
xi = x̄i ∀i ∈ ∂M,

where x̄i denotes the fixed location of the ith boundary vertex. This optimization problem
was also used in [16]. The absolute value in the denominator of the mean-ratio metric has
been dropped because the consistent orientation constraints ensure that this quantity is
positive.

The objective function is twice continuously differentiable on the open feasible region,
but it is not convex. Figure 2 shows a triangular mesh with six elements and two free vertices
that uses an equilateral ideal element. The Hessian of the objective function contains one
negative eigenvalue with a value of −70 and three positive eigenvalues. Therefore, the
objective function is not convex.

Furthermore, the feasible region, the set of points with a consistent orientation, may be
neither convex nor connected. However, most of the meshing packages used to construct
a mesh for a given domain, such as [33, 35], provide a feasible point. In cases where the
starting point is infeasible, an auxiliary optimization problem with a different metric can
be solved to calculate a feasible starting point. The problem used to construct a feasible
starting point is beyond the scope of this work; see [19], for example.

The inverse mean ratio metric can be generalized to tetrahedral elements. A tetrahedral
element consists of an ordered set of four vertices (a, b, c, d), where each vertex is an element
of !3. The incidence matrix A ∈ !3×3 is then defined as

A :=
[

b − a c − a d − a
]
,

where the determinant of the incidence matrix is a measure of the volume of the element.
As before, let W denote the incidence matrix for the ideal element, and assume that this
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element has a positive volume so that W−1 exists. If the ideal tetrahedral element is an
equilateral tetrahedron, then the weight matrix is

W =




1 1

2
1
2

0
√

3
2

√
3

6

0 0
√

6
3



 .

An isosceles tetrahedral element is obtained when W is the identity matrix.
The mean ratio for a tetrahedral element with an incidence matrix A referenced to an

ideal element with incidence matrix W is then

‖AW−1‖2
F

3|det(AW−1)|
2
3

.

The power in the denominator is necessary in order to make the entire quantity dimen-
sionless and scale invariant. As in the two-dimensional case, the mean ratio metric for
tetrahedral elements is invariant to scaling, translating, and rotating the input values.

An optimization problem similar to the two-dimensional case can be constructed for
tetrahedral elements. In particular, the objective function uses this form of the inverse
mean-ratio metric without the absolute value in the denominator and imposes the consistent
orientation constraints det(Ae(x)) > 0 for all e ∈ E.

An assumption made for the shape-quality optimization problem is that the objective
function approaches infinity for any sequence of feasible points in which the area of at
least one element converges to zero. This assumption is satisfied when the triangular or
tetrahedral mesh is edge connected and contains at least two distinct vertices fixed on the
boundary of the mesh. A mesh is edge connected if for every pair of elements ek and e!

there exists an ordered sequence of elements emanating from ek and terminating with e!

such that all adjacent elements in the sequence share at least two vertices. The two shared
vertices form an edge that both elements have in common.

The general argument made to prove this statement is by contradiction. In order for the
objective function to be bounded away from infinity, all of the individual element functions
must be bounded away from infinity. Therefore, if the area of an element in the sequence
of feasible points converges to zero and the inverse mean ratio for that element remains
bounded, then the Frobenius norm of the incidence matrix for that element must converge
to zero. That is, the length of every edge in the element must converge to zero. Because
the mesh is edge connected, at least one edge in all of the neighboring elements must also
converge to zero, implying that the areas of all the neighboring elements converge to zero.
The argument is then applied inductively to show that the length of all edges in the mesh
must converge to zero, a situation that can happen only if all of the vertices converge to
a single point. However, two distinct vertices are fixed on the boundary by assumption.
Therefore, if the triangular or tetrahedral mesh is edge connected and contains at least two
distinct vertices fixed on the boundary, then the objective function approaches infinity for
any sequence of feasible points in which the area of at least one element converges to zero.

Therefore, the consistent orientation constraints can be dropped from the optimization
problem. In this case, the objective function must return a value of plus infinity whenever
the area of one of the elements is nonpositive. Furthermore, a feasible starting point must
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be supplied to the optimization routine. Once the boundary vertices are fixed and removed,
we have an unconstrained optimization problem with an objective function that is twice
continuously differentiable on an open set containing the level set. Therefore, a Newton
method can be applied to solve this problem.

While the inverse mean-ratio metric is defined for triangular and tetrahedral elements, it
can be used with other element types. A quadrilateral element, for example, can be decom-
posed into four overlapping triangles. In this case, both the trial and ideal quadrilaterals
are decomposed into triangles. The inverse mean ratio is then applied to each decomposed
triangle in the trial element referenced to the corresponding ideal triangle. The average of
these values is a shape-quality metric for the quadrilateral element. Similarly, hexahedral
elements can be decomposed into eight overlapping tetrahedra.

3 Preconditioner Properties

We apply an inexact Newton method [22, 29] to the unconstrained optimization problem
for minimizing the average inverse mean-ratio metric for a given mesh, where the conjugate
gradient method [32] with a block Jacobi preconditioner is used to approximately solve the
symmetric system of linear equations. This system of equations can be indefinite because
the objective function is not convex. Therefore, we need to prove that the block Jacobi
preconditioner is positive definite.

Given a feasible point for the optimization problem, we obtain the block Jacobi precon-
ditioner by taking the Hessian of the objective function, F (x), with respect to each of the
vertices. That is,

M =





∇2
x1,x1

F (x)
. . .

∇2
xi,xi

F (x)
. . .

∇2
x|V |,x|V |

F (x)




,

where ∇2
xi,xi

F (x) ∈ !2×2 for triangular elements and all off-diagonal blocks are zero. To
establish that this matrix is positive definite, we prove that ∇2

xi,xi
F (x) is positive definite

for each i = {1, . . . , |V |}.
This proof is performed in two parts. In Section 3.1, we prove a general theorem about

the convexity of fractional functions. This theorem is then applied to components of the
inverse mean-ratio metric in Section 3.2 to show that this metric is a convex function in
each of the vertices. We then prove that the appropriate parts of the Hessian matrix are
invertible. The preconditioner is then shown to be positive definite.

3.1 Convexity Theorem for Fractional Functions

The inverse mean-ratio metric is a nonlinear fractional function f
g , where f : !n → ! and

g : !n → ! are nonlinear functions. If f is a nonnegative, convex function and g is a positive,
concave function, then f

g is a pseudoconvex function (see [27] Problem 9.6.1, for example).
However, pseudoconvexity is not preserved under addition and does not guarantee that the
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Hessian matrix is positive semidefinite. Proposition 3.2 provides a set of conditions under
which nonlinear fractional functions are proved to be convex.

Definition 3.1 (Uniform Convexity [30]) Let f : !n → !, and let Ω ⊆ !n be a convex
set. The function f is uniformly convex on Ω with constant κ if there exists a constant
κ > 0 such that for all x ∈ Ω, y ∈ Ω, and λ ∈ [0, 1],

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y) − κλ(1 − λ)‖y − x‖2
2.

Proposition 3.2 Let f : !n → ! and g : !n → !, and let Ω ⊆ !n be a convex set.
Assume the following properties are satisfied:

1. g is a positive, concave function on Ω.

2. f is a nonnegative, uniformly convex function with constant κ on Ω.

3. For all (x, y) ∈ Θ :=
{

(x, y) ∈ Ω× Ω | f(y)
g(y) ≥ f(x)

g(x) and g(y) ≥ g(x)
}
,

(
f(y)
g(y) −

f(x)
g(x)

)
(g(y) − g(x)) ≤ κ‖y − x‖2

2.

Then, f
g is a nonnegative, convex function on Ω.

Proof: The function f
g is nonnegative on Ω, since both g and f are nonnegative functions

by Property 1 and Property 2, respectively. We now prove this function is convex on Ω.
If Ω is the empty set, then there is nothing to prove. Therefore, assume Ω is nonempty.

Let x ∈ Ω, y ∈ Ω, and λ ∈ [0, 1] be arbitrary. Define x(λ) = (1 − λ)x + λy. Since Ω is a
convex set, x(λ) ∈ Ω and g(x(λ)) > 0 by Property 1.

By using Property 2 and the fact that g(x(λ)) > 0, the following inequality is obtained:
f(x(λ))
g(x(λ)) ≤ (1 − λ) f(x)

g(x(λ)) + λ f(y)
g(x(λ)) −

κλ(1−λ)
g(x(λ)) ‖y − x‖2

2. (1)

We obtain an approximation to 1
g(x(λ)) by first evaluating the difference 1

g(x(λ)) −
1

g(x)
with the following inferences:

1
g(x(λ)) −

1
g(x) = g(x)−g(x(λ))

g(x)g(x(λ)) ≤ g(x)−(1−λ)g(x)−λg(y)
g(x)g(x(λ)) = λ g(x)−g(y)

g(x)g(x(λ)) ,

where the inequality is a consequence of the concavity and positivity of g on Ω from Prop-
erty 1. Therefore,

1
g(x(λ)) ≤ 1

g(x) + λ g(x)−g(y)
g(x)g(x(λ)) . (2)

A similar argument shows that
1

g(x(λ)) ≤ 1
g(y) + (1 − λ) g(y)−g(x)

g(y)g(x(λ)) . (3)

Equation (1) is then combined with (2) and (3) by using the fact that f(x) ≥ 0 from
Property 2 to obtain

f(x(λ))
g(x(λ)) ≤ (1 − λ) f(x)

g(x(λ)) + λ f(y)
g(x(λ)) −

κλ(1−λ)
g(x(λ)) ‖y − x‖2

2

≤ (1 − λ) f(x)
g(x) + λf(y)

g(y) + λ(1 − λ)
(
f(x) g(x)−g(y)

g(x)g(x(λ)) + f(y) g(y)−g(x)
g(y)g(x(λ)) − κ

‖y−x‖2
2

g(x(λ))

)

= (1 − λ) f(x)
g(x) + λf(y)

g(y) + λ(1−λ)
g(x(λ))

((
f(y)
g(y) −

f(x)
g(x)

)
(g(y) − g(x)) − κ‖y − x‖2

2

)
.
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Since λ(1−λ)
g(x(λ)) is a nonnegative value, we complete the proof by showing

(
f(y)
g(y) −

f(x)
g(x)

)
(g(y) − g(x)) − κ‖y − x‖2

2 ≤ 0.

Without loss of generality, we can assume that x and y have been ordered so that
g(x) ≤ g(y). Therefore, two cases must be considered.

Case 1 If g(x) ≤ g(y) and f(x)
g(x) > f(y)

g(y) , then
(

f(y)
g(y) −

f(x)
g(x)

)
(g(y) − g(x)) − κ‖y − x‖2

2 ≤ 0

because the first term is nonpositive.

Case 2 If g(x) ≤ g(y) and f(x)
g(x) ≤ f(y)

g(y) , then (x, y) ∈ Θ, and Property 3 implies that
(

f(y)
g(y) −

f(x)
g(x)

)
(g(y) − g(x)) − κ‖y − x‖2

2 ≤ 0.

Therefore, for all x ∈ Ω, y ∈ Ω, and λ ∈ [0, 1]

f((1−λ)x+λy)
g((1−λ)x+λy) ≤ (1 − λ) f(x)

g(x) + λf(y)
g(y) ,

and f
g is a convex function on Ω. !

Property 3 can be interpreted as a joint Lipschitz continuity condition between f
g and

g on a restricted set. This condition is necessary when, for example, f(x) = ‖x‖2
2 and

g is a linear function. In this case, f(x) is a uniformly convex function with κ = 1.
Furthermore, (1), (2), and (3) all become equations in the proof of Proposition 3.2. Since
these approximations are now tight, Property 3 must hold with κ = 1 in order for Case 2
to imply that f

g is a convex function.

3.2 Convexity of the Inverse Mean-Ratio Metric

Recall that the inverse mean-ratio metric is defined as:

‖A(x)‖2
F

det(A(x))α
,

where A(x) is the incidence matrix for the trial element times the inverse incidence matrix
for the ideal element, W−1, and α = 1 for triangles and α = 2

3 for tetrahedra. All proofs in
this section are for triangular elements. The same techniques can be applied for tetrahedral
elements; the details can be found in [28].

To fix notation let 0 ≤ α ≤ 1; let (wa, wb, wc) ∈ !2×3 be the coordinates for the ideal
element with det(W ) = det

([
wb − wa wc − wa

])
> 0; and let (a, b, c) ∈ !2×3 be the

coordinates for the trial element with det
([

b − a c − a
])

> 0. Moreover, let

W−1 =
[

w̄1,1 w̄1,2

w̄2,1 w̄2,2

]
,
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where w̄i,j is the (i, j) element of W−1.
We then define the following functions:

Aa(x) =
[

b − x c − x
]
W−1

Ab(x) =
[

x − a c − a
]
W−1

Ac(x) =
[

b − a x − a
]
W−1

ma(x) = ‖Aa(x)‖2
F

det(Aa(x))α

mb(x) = ‖Ab(x)‖2
F

det(Ab(x))α

mc(x) = ‖Ac(x)‖2
F

det(Ac(x))α .

That is, Aa(x) is the incidence matrix times the inverse incidence matrix for the ideal ele-
ment as a function of the first vertex position, while Ab(x) and Ac(x) are the corresponding
functions for the second and third vertex positions, respectively, while ma(x), mb(x), and
mc(x) are the resulting inverse mean-ratio functions. We also define the following sets:

Ωa =
{
x ∈ !2 | det(Aa(x)) > 0

}

Ωb =
{
x ∈ !2 | det(Ab(x)) > 0

}

Ωc =
{
x ∈ !2 | det(Ac(x)) > 0

}
.

The remainder of this section shows that ma(x), mb(x), and mc(x) are each convex functions
of x on Ωa, Ωb, and Ωc, respectively, by applying Proposition 3.2. The Hessian matrix is
then shown to be positive definite.

Lemma 3.3 demonstrates that the mean ratio is invariant to an even permutation applied
to the vertices for both the trial and ideal elements. The permutation needs to be even so
that we do not change the sign of det(W ). This invariance means that we need to prove
convexity and positive definiteness for only one function since the others can be obtained
by applying a permutation.

Lemma 3.3 Let (wa, wb, wc) ∈ !2×3 be given such that det(W ) > 0, and let (a, b, c) ∈ !2×3

be arbitrary. Then, the following are equivalent:

1.
[

b − a c − a
] [

wb − wa wc − wa
]−1

2.
[

c − b a − b
] [

wc − wb wa − wb
]−1

.

Proof:
[

b − a c − a
] [

wb − wa wc − wa
]−1

=
[

c − b a − b
] [

0 1
−1 −1

] ([
wc − wb wa − wb

] [
0 1

−1 −1

])−1

=
[

c − b a − b
] [

0 1
−1 −1

] [
0 1

−1 −1

]−1 [
wc − wb wa − wb

]−1

=
[

c − b a − b
] [

wc − wb wa − wb
]−1

.

!
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Lemma 3.4 For any weight matrix W−1,

1. det(Ac(x)) is a linear function of x.

2. Ωc is a convex set.

Proof: From the properties of the determinant,

det(Ac(x)) = det
([

b1 − a1 x1 − a1

b2 − a2 x2 − a2

]
W−1

)

= det
([

b1 − a1 x1 − a1

b2 − a2 x2 − a2

])
det

(
W−1

)

= ((b1 − a1)(x2 − a2) − (b2 − a2)(x1 − a1)) det
(
W−1

)

This calculation shows that det(Ac(x)) is a linear function of x. Furthermore, Ωc consists
of a strict linear inequality, which forms a convex set. !

Lemma 3.5 For any weight matrix W−1 and for any 0 ≤ α ≤ 1, det(Ac(x))α is a concave
function of x on Ωc.

Proof: Since det(Ac(x)) is a linear function of x by Lemma 3.4,

det(Ac((1 − λ)x + λy)) = (1 − λ) det(Ac(x)) + λdet(Ac(y))

for any λ ∈ [0, 1]. If x ∈ Ωc and y ∈ Ωc, then (1− λ)x + λy ∈ Ωc because Ωc is a convex set
by Lemma 3.4. Therefore, det(Ac((1 − λ)x + λy)) > 0. The power is applied to both sides
of the equation to obtain

det(Ac((1 − λ)x + λy))α = ((1 − λ) det(Ac(x)) + λdet(Ac(y)))α

≥ (1 − λ) det(Ac(x))α + λdet(Ac(y))α,

where the last inequality holds because ψα is a concave function on the region ψ ≥ 0 for
any 0 ≤ α ≤ 1 [31]. !

Lemma 3.6 For any weight matrix W−1 with det(W−1) > 0, ‖Ac(x)‖2
F is a uniformly

convex function of x with constant κ = w̄2
2,1 + w̄2

2,2 > 0.

Proof: The Hessian matrix for ‖Ac(x)‖F is 2(w̄2
2,1 + w̄2

2,2)I, where I is the identity matrix.
Therefore, this matrix is uniformly positive definite with constant 2(w̄2

2,1 + w̄2
2,2). The

relationship between equivalent definitions of uniform convexity then imply that

‖Ac((1 − λ)x + λy)‖2
F ≤ (1 − λ)‖Ac(x)‖2

F + λ‖Ac(y)‖2
F −

(
w̄2

2,1 + w̄2
2,2

)
λ(1 − λ)‖y − x‖2

2.

Since det(W−1) > 0, either w̄2,1 ,= 0 or w̄2,2 ,= 0. Hence, ‖Ac(x)‖2
F is a uniformly convex

function with κ = w̄2
2,1 + w̄2

2,2 > 0. !
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Lemma 3.7 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Define
Ω = Ωc, f(x) = ‖Ac(x)‖2

F , and g(x) = det(Ac(x))α. Then for any (x, y) ∈ Θ, where Θ is
defined in Proposition 3.2,

(
f(y)
g(y)

− f(x)
g(x)

)
(g(y) − g(x)) ≤ (w̄2

2,1 + w̄2
2,2)‖y − x‖2

2.

Proof: This lemma is proved by showing that

sup
(x,y)∈Θ

(
f(y)
g(y)

− f(x)
g(x)

)
(g(y) − g(x)) − (w̄2

2,1 + w̄2
2,2)‖y − x‖2

2 ≤ 0.

If Θ is the empty set, then there is nothing to prove. Therefore, assume Θ is nonempty,
and let (x, y) ∈ Θ. Since det(Ac(x)) > 0, ‖b − a‖2 > 0. We then make the change of
variables x = Rx̄ + a and y = Rȳ + a, where R is an orthogonal matrix with det(R) = 1
defined as

R =

[
b1−a1
‖b−a‖2

a2−b2
‖b−a‖2

b2−a2
‖b−a‖2

b1−a1
‖b−a‖2

]
.

We use the following definitions throughout the remainder of this section.

d = ‖b − a‖2

ν = d det(W−1)
∆ = w̄2

2,1 + w̄2
2,2

δ(ξ) = (dw̄1,1 + w̄2,1ξ)2 + (dw̄1,2 + w̄2,2ξ)2

Note that ∆ > 0 by Lemma 3.5 and ν > 0.
We now have the following expressions for ‖Ac(x)‖2

F , det(Ac(x)), and ‖y − x‖2
2:

‖Ac(x)‖2
F = ‖Ac(Rx̄ + b)‖2

F

=
∥∥[

b − a Rx̄ + a − a
]
W−1

∥∥2

F

=
∥∥R

[
RT (b − a) x̄

]
W−1

∥∥2

F

=
∥∥∥∥

[
d x̄1

0 x̄2

] [
w̄1,1 w̄1,2

w̄2,1 w̄2,2

]∥∥∥∥
2

F
= δ(x̄1) +∆x̄2

2

det(A(x)) = det
(

R

[
d x̄1

0 x̄2

]
W−1

)

= νx̄2

‖y − x‖2
2 = ‖Rȳ + a − Rx̄ − a‖2

2

= ‖R(ȳ − x̄)‖2
2

= ‖ȳ − x̄‖2
2,

where the orthogonality of R is used in the norm calculations and det(R) = 1 is used in the
determinant. The optimization problem we want to solve is then

supx̄∈%2,ȳ∈%2

(
δ(ȳ1)+∆ȳ2

2
(νȳ2)α − δ(x̄1)+∆x̄2

2
(νx̄2)α

)
((νȳ2)α − (νx̄2)α) −∆‖ȳ − x̄‖2

2

subject to νȳ2 ≥ νx̄2 > 0
(νȳ2)α ≥ (νx̄2)α

δ(ȳ1)+∆ȳ2
2

(νȳ2)α ≥ δ(x̄1)+∆x̄2
2

(νx̄2)α .

12



Eliminating ν from the problem because it is a positive constant, and dropping the last
two constraints, we obtain the following optimization problem, which provides an upper
bound on the supremum:

supx̄∈%2,ȳ∈%2

(
δ(ȳ1)+∆ȳ2

2
ȳα
2

− δ(x̄1)+∆x̄2
2

x̄α
2

)
(ȳα

2 − x̄α
2 ) −∆‖ȳ − x̄‖2

2

subject to ȳ2 ≥ x̄2 > 0.

Examining those terms involving ȳ2
2 and x̄2

2, we obtain

∆((ȳ2−α
2 − x̄2−α

2 )(ȳα
2 − x̄α

2 ) − (ȳ2 − x̄2)2) = ∆(ȳ2
2 − ȳ2−α

2 x̄α
2 − ȳα

2 x̄2−α
2 + x̄2

2 − (ȳ2 − x̄2)2)
= ∆(2ȳ2x̄2 − ȳ2−α

2 x̄α
2 − ȳα

2 x̄2−α
2 )

= ∆ȳ2x̄2

(
2 − ȳ1−α

2

x̄1−α
2

− x̄1−α
2

ȳ1−α
2

)

≤ 0,

where the last inequality is obtained from the arithmetic-geometric mean inequality. After
removing these terms, we are left with the following optimization problem, which provides
an upper bound on the supremum:

supx̄∈%2,ȳ∈%2

(
δ(ȳ1)
ȳα
2

− δ(x̄1)
x̄α
2

)
(ȳα

2 − x̄α
2 ) −∆(ȳ1 − x̄1)2

subject to ȳ2 ≥ x̄2 > 0.

We now write ȳα
2 = βx̄α

2 for β ≥ 1 because x̄α
2 > 0, eliminate ȳ2 and x̄2, and rearrange

the terms to obtain the equivalent optimization problem:

supȳ1∈%,β≥1 supx̄1∈%
1
β

(
(β − 1)δ(ȳ1) − β(β − 1)δ(x̄1) − β∆(ȳ1 − x̄1)2

)
.

Note that the objective function is strongly concave in the x̄1 variable. Therefore, we can
set to zero the gradient of the objective function with respect to x̄1 to derive the optimal
solution for x̄1 given ȳ1 and β.

∇x̄1obj(x̄1, ȳ1,β) = −2((β − 1)((dw̄1,1 + w̄2,1x̄1)w̄2,1 + (dw̄1,2 + w̄2,2x̄1)w̄2,2 +∆(x̄1 − ȳ1))
= −2((β − 1)(∆x̄1 + d(w̄1,1w̄2,1 + w̄1,2w̄2,2) +∆(x̄1 − ȳ1))
= −2(β∆x̄1 + (β − 1)d(w̄1,1w̄2,1 + w̄1,2w̄2,2) −∆ȳ1)
= −2β∆

(
x̄1 + dβ−1

β

(
w̄1,1w̄2,1+w̄1,2w̄2,2

∆

)
− ȳ1

β

)
.

Therefore,

x̄1 =
ȳ1

β
− d

β − 1
β

(
w̄1,1w̄2,1 + w̄1,2w̄2,2

∆

)
.

Substituting this quantity into the objective function gives an equivalent problem

supȳ1∈%,β≥1
1
β




(β − 1)δ(ȳ1) − β(β − 1)δ

(
ȳ1
β − dβ−1

β

(
w̄1,1w̄2,1+w̄1,2w̄2,2

∆

))
−

β∆
(
ȳ1 − ȳ1

β + dβ−1
β

(
w̄1,1w̄2,1+w̄1,2w̄2,2

∆

))2



 ,

which simplifies to

sup
β≥1

−(β − 1)2

β

(
ν2

∆

)
.

The constant in this optimization problem is positive since ν > 0 and ∆ > 0. Hence, the
superemum is zero. !
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Lemma 3.8 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1. Then
for any x ∈ Ωc, ∇2

x,xmc(x) is invertible.

Proof: If Ωc is empty, then there is nothing to prove. Therefore, let Ωc be nonempty, and
let x ∈ Ωc. Define R to be as in the proof of Lemma 3.7. Then we have

mc(x) = mc(Rx̄ + a)

where x̄ = RT (x − a). By the chain rule,

∇xmc(x) = [∇x̄mc(Rx̄ + a)] RT

and
∇2

x,xmc(x) = R
[
∇2

x̄,x̄mc(Rx̄ + a)
]
RT .

We can ignore the terms involving R, since R is an orthogonal matrix with det(R) = 1.
Using the definitions from Lemma 3.7 we have by direct computation that

∇2
x̄,x̄mc(Rx̄ + a) =




2∆

ναx̄α
2

−2α(∆x̄1+d(w̄1,1w̄2,1+w̄1,2w̄2,2))

ναx̄α+1
2

−2α(∆x̄1+d(w̄1,1w̄2,1+w̄1,2w̄2,2))

ναx̄α+1
2

(2−α)(1−α)∆
ναx̄α

2
+ α(α+1)δ(x̄1)

ναx̄α+2
2





Rewriting, we obtain the following matrix:

1
ναx̄α+2

2

[
2∆x̄2

2 −2α(∆x̄1 + d(w̄1,1w̄2,1 + w̄1,2w̄2,2))x̄2

−2α(∆x̄1 + d(w̄1,1w̄2,1 + w̄1,2w̄2,2))x̄2 (2 − α)(1 − α)∆x̄2
2 + α(α+ 1)δ(x̄1)

]
.

Since x̄2 > 0 because x ∈ Ωc and ν > 0, we can ignore the positive coefficient. The
determinant of this matrix is then

2(2 − α)(1 − α)∆2x̄4
2 + 2α(α+ 1)δ(x̄1)∆x̄2

2 − 4α2(∆x̄1 + d(w̄1,1w̄2,1 + w̄1,2w̄2,2))2x̄2
2.

The first term is nonnegative and strictly positive whenever 0 ≤ α < 1 since x̄2 > 0.
We now concentrate on the last two terms:
2α(α+ 1)δ(x̄1)∆x̄2

2 − 4α2(∆x̄1 + d(w̄1,1w̄2,1 + w̄1,2w̄2,2))2x̄2
2

= 2αx̄2
2




(α+ 1)((dw̄1,1 + w̄2,1x̄1)2 + (dw̄1,2 + w̄2,2x̄1)2)(w̄2

2,1 + w̄2
2,2) −

2α
(

(dw̄1,1 + w̄2,1x̄1)2w̄2
2,1 + 2(dw̄1,1 + w̄2,1x̄1)(dw̄1,2 + w̄2,2x̄1)w̄2,1w̄2,2 +

(dw̄1,2 + w̄2,2x̄1)2w̄2
2,2

)




= 2αx̄2
2




(1 + α)((dw̄1,1 + w̄2,1x̄1)2w̄2

2,2 + (dw̄1,2 + w̄2,2x̄1)2w̄2
2,1) +

(1 − α)((dw̄1,1 + w̄2,1x̄1)2w̄2
2,1 + (dw̄1,2 + w̄2,2x̄1)2w̄2

2,2) −
4α(dw̄1,1 + w̄2,1x̄1)(dw̄1,2 + w̄2,2x̄1)w̄2,1w̄2,2





= 2αx̄2
2




(1 + α)((dw̄1,1 + w̄2,1x̄1)w̄2,2 − (dw̄1,2 + w̄2,2x̄1)w̄2,1)2 +
(1 − α)((dw̄1,1 + w̄2,1x̄1)2w̄2

2,1 + (dw̄1,2 + w̄2,2x̄1)2w̄2
2,2) +

2(1 − α)(dw̄1,1 + w̄2,1x̄1)(dw̄1,2 + w̄2,2x̄1)w̄2,1w̄2,2





= 2αx̄2
2

(
(1 + α)((dw̄1,1 + w̄2,1x̄1)w̄2,2 − (dw̄1,2 + w̄2,2x̄1)w̄2,1)2 +
(1 − α)((dw̄1,1 + w̄2,1x̄1)w̄2,1 + (dw̄1,2 + w̄2,2x̄1)w̄2,2)2

)

= 2αx̄2
2((1 + α)ν2 + (1 − α)((dw̄1,1 + w̄2,1x̄1)w̄2,1 + (dw̄1,2 + w̄2,2x̄1)w̄2,2)2).

Since ν > 0, this quantity is nonnegative and positive when 0 < α ≤ 1.
Combining these two conditions, we have that the determinant is positive for any given

0 ≤ α ≤ 1. Hence, ∇2
x,xmc(x) is invertible for any x ∈ Ωc. !
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Theorem 3.9 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1.
Then, mc(x) is a nonnegative, convex function of x on Ωc. Furthermore, for any x ∈ Ωc,
∇2

x,xmc(x) is positive definite.

Proof: Lemma 3.4 shows that Ωc is a convex set, Lemma 3.5 demonstrates that det(Ac(x))α

is a concave function on Ωc, and det(Ac(x))α > 0 for any x ∈ Ωc. Therefore, Property 1
of Proposition 3.2 is satisfied. Furthermore, ‖Ac(x)‖2

F is a nonnegative function of x and
Lemma 3.6 shows that ‖Ac(x)‖2

F is uniformly convex with constant w̄2
2,1 + w̄2

2,2 > 0. There-
fore, Property 2 of Proposition 3.2 holds. Lemma 3.7 shows that Property 3 is satisfied.
Therefore, by Proposition 3.2, mc(x) is a nonnegative, convex function of x on Ωc.

Since mc(x) is convex and twice continuously differentiable on Ωc, ∇2
x,xmc(x) is positive

semidefinite for any x ∈ Ωc. However, Lemma 3.8 shows that the Hessian matrix is also
invertible for any x ∈ Ωc. Therefore, we conclude that ∇2

x,xmc(x) is positive definite for
any x ∈ Ωc. !

Corollary 3.10 Let W−1 be any weight matrix with det(W−1) > 0, and let 0 ≤ α ≤ 1.
Then ∇2

x,xma(x) is positive definite for any x ∈ Ωa and ∇2
x,xmb(x) is positive definite for

any x ∈ Ωb.

Proof: By Lemma 3.3,

Aa(x) =
[

b − x c − x
] [

wb − wa wc − wa
]−1

=
[

c − b x − b
] [

wc − wb wa − wb
]−1

.

We now apply Theorem 3.9 to ma(x) using this equivalent redefinition. Therefore, ∇2
x,xma(x)

is positive definite for any x ∈ Ωa. A similar argument using two applications of Lemma 3.3
shows that ∇2

x,xmb(x) is positive definite for any x ∈ Ωb. !

Corollary 3.11 Let W−1 be any weight matrix with det(W−1) > 0, and let x ∈ !2×|V | be
given such that det(Ae(x)) > 0 for all e ∈ E. Then, the block Jacobi preconditioner for the
shape-quality optimization problem using the mean-ratio metric is positive definite.

Proof: The objective function, F (x), for the shape-quality optimization problem consists
of the sum of the mean-ratio metric for each element. Therefore,

∇2
xi,xi

F (x) =
∑

{e∈E|e1=i}

∇2
xi,xi

ma(xi) +
∑

{e∈E|e2=i}

∇2
xi,xi

mb(xi) +
∑

{e∈E|e3=i}

∇2
xi,xi

mc(xi),

where a = xe1 , b = xe2 , and c = xe3 in the mean ratio metric for each e ∈ E. Theorem 3.9
and Corollary 3.10 now imply that ∇2

xi,xi
F (x) is positive definite because the sum of posi-

tive definite matrices is also positive definite. Therefore, the block Jacobi preconditioner is
positive definite. !

We have proved that the inverse mean-ratio metric for triangular and tetrahedral ele-
ments is a convex function of each coordinate, with the diagonal components of the Hessian
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matrix being positive definite for any 0 ≤ α ≤ 1. In particular, we have an edge-length
metric when α = 0 and a generalized form of the inverse mean ratio when 0 < α ≤ 1. Note
that when α = 0, the argument made for removing the consistent orientation constraints
in the optimization problem is no longer valid. Furthermore, while we have assumed that
det(W−1) > 0, the proofs work with some modification when det(W−1) < 0.

4 Algorithm and Implementation

An inexact Newton method [22, 29] with an Armijo linesearch [1] was coded to solve the
mesh shape-quality optimization problem. In particular, given xk, the algorithm computes
a direction dk by solving the symmetric system of linear equations

∇2F (xk)dk = −∇F (xk)

by applying a conjugate gradient method with a block Jacobi preconditioner [32]. Since the
Hessian can be indefinite, the conjugate gradient method may terminate with a direction
of negative curvature. In such a case, the base of the direction is used as the starting point
for the linesearch. If

∇F (xk)T dk ≥ −ρ‖dk‖p
2,

where ρ > 0 and p ≥ 2 are constants, then the steepest descent direction −∇F (xk) is used.
The Armijo linesearch finds the smallest nonnegative integer m such that

F (xk + βmdk) ≤ F (xk) + σβm∇F (xk)T dk,

where 0 < σ < 1
2 and 0 < β < 1 are constants. The iterate is then updated with the

rule xk+1 = xk + βmdk, and a new direction is computed. The algorithm terminates when
‖∇F (xk)‖2 is less than 1.0 × 10−6.

The average inverse mean-ratio objective function requires that a value of plus infinity
be returned whenever the consistent orientation conditions are not satisfied. Therefore, if
the area of at least one element is smaller than ε = 1.0 × 10−14, we consider the consistent
orientation conditions to be violated, and the objective function is set to plus infinity in the
linesearch.

The gradient and Hessian of the objective function are calculated analytically by as-
sembling the gradients and Hessians for each element function into a vector and symmetric
sparse matrix. Only the upper triangular part of the Hessian matrix is stored in a block
compressed sparse row format. Each block of the Hessian matrix corresponds to a vertex-
vertex interaction in the original mesh. In order to facilitate the assembly of the Hessian
matrix, once the sparsity pattern is obtained, an additional vector is calculated that tells
the offset into the Hessian matrix data vector where the element Hessians are to be accu-
mulated. The gradient and Hessian of the elements with respect to vertices fixed on the
boundary of the mesh are ignored.

The code for calculating the gradient of the element function uses the reverse mode of
automatic differentiation [7, 20]. The code was written and refined by hand to eliminate
unnecessary operations, resulting in a more efficient gradient evaluation. The Hessian cal-
culation uses the forward mode of differentiation on the gradient evaluation. The resulting
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code was written using matrix-matrix products for efficiency. An evaluation routine that
computes only the gradient of the element has also been coded that requires fewer floating-
point operations than the function plus gradient evaluation. A similar routine has been
provided to compute only the Hessian evaluation.

The conjugate gradient method terminates if the system of equations is solved to within
a specified tolerance, if a direction of negative curvature is encountered, or if 100 conjugate
gradient iterations have been performed. The conjugate gradient implementation terminates
when

‖∇2F (xk)dk + ∇F (xk)‖2 ≤ 10−2 × ‖∇F (xk)‖2.

That is, the relative tolerance is used for the termination test. No steepest descent directions
were used in the tests performed in Section 5. Therefore, the code simply checks that the
resulting direction is a descent direction, ∇F (xk)T dk < 0, and terminates with an error
message if this condition is not satisfied.

The block Jacobi preconditioner uses the 2 × 2 or 3 × 3 matrices on the diagonal of
the Hessian matrix depending on whether the problem is triangular or tetrahedral, respec-
tively. An LDLT factorization of each diagonal matrix is performed when calculating the
preconditioner, where L has ones on the diagonal. When the preconditioner is applied,
y = L−T (D−1(L−1x)) is calculated. In order to eliminate all division operations when the
preconditioner is applied, D−1 is stored instead of D. Each diagonal block of the Hes-
sian matrix is positive definite by Corollary 3.11, even though the overall Hessian matrix
is indefinite in general. Therefore, no checks for indefiniteness are performed during the
computation of the preconditioner.

The Armijo linesearch is slightly modified from the literature; the full step length is
taken if the gradient of the objective function is within 100 times the convergence tolerance,
regardless of the objective function value. This rule is used because the objective function
may increase slightly as a result of roundoff errors in the calculation of the objective function,
although the algorithm is close to a solution. In order to implement this test, a function
plus gradient evaluation is performed for the full step, and only function evaluations are
performed during the remainder of the linesearch. If the full step is rejected, a gradient
evaluation is performed at the accepted step for use in the termination test.

In order to obtain good locality of reference, the vertices and elements in the initial mesh
are reordered by using a breadth-first search ordering [32] prior to applying the inexact
Newton method. The ordering starts by selecting the (boundary) vertex farthest from
the origin as a starting point. A breadth-first search of the vertices in the mesh is then
performed. The order in which the vertices were visited is reversed, as in the reverse Cuthill-
McKee ordering [11], to obtain a symmetric permutation of the vertices for the optimization
problem. The elements are then ordered according to when they are referenced by the
vertices. Other orderings can be applied that may give rise to further improvements in
performance [21].

The source code is publicly available at http://www.mcs.anl.gov/~tmunson/codes.
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Figure 3: Smoothed deer and turtle triangular meshes.
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Figure 4: Surface meshes for the foam, gear, and hook meshes.

5 Numerical Results

AMPL [14] was used during the development of the inexact Newton code to verify the
correctness of the analytic gradient and Hessian evaluations and to check that the solution
computed by the inexact Newton code is consistent with the solution found by other general-
purpose methods. Eleven meshes were used for testing purposes. The triangular meshes
were obtained from the Triangle meshing package [35], and the tetrahedral meshes were
obtained from CUBIT [33]. Figure 3 plots the deer and turtle triangular meshes; Figure 4
displays the surface mesh for the foam, gear, and hook tetrahedral meshes. Table 1 reports
statistics for all of test meshes, including the number of vertices and elements in the mesh
and the total number of variables once the boundary vertices have been removed. A feasible
starting point is provided for all these example problems.

All tests in this section were run on a 1.8 GHz Intel Pentium 4 machine running Linux.
The inexact Newton code was compiled by using gcc version 3.2 with the -O9 optimization
flag. This machine has 512 MB of RAM with a 256 KB cache and was not running any
other jobs at the time the results were generated. The codes were executed from a local
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Table 1: Statistics for the test meshes
Mesh Type Vertices Elements Variables
deer triangular 1,122 1,896 1,520
turtle triangular 2,222 4,025 3,578
rand1000 triangular 1,152 2,170 2,048
rand10000 triangular 10,400 20,394 20,000
foam tetrahedral 1,337 4,847 867
gear tetrahedral 866 3,116 780
hook tetrahedral 1,190 4,675 1,200
duct20 tetrahedral 1,067 4,104 1,146
duct15 tetrahedral 2,139 9,000 2,868
duct12 tetrahedral 4,199 19,222 6,906
ductbig tetrahedral 177,887 965,759 425,952

disk and did not access any network disks.
The inexact Newton method computed solutions with ‖∇F (x)‖2 ≤ 1.0× 10−6 for all of

the test meshes. Directions of negative curvature were obtained by the conjugate gradient
method during several iterations of the inexact Newton algorithm on the rand1000 and
rand10000 problems. Even though the objective function for the optimization problem is
not convex, the Hessian matrix is positive definite at the critical point returned by the code
for all the example meshes.

The choice of preconditioner used in the inexact Newton method is crucial when solving
these optimization problems. When no preconditioner is used, the iteration limit in the
conjugate gradient method is typically reached without computing a direction where the
relative residual has decreased enough. The overall algorithm then fails to converge in
100 iterations. A diagonal preconditioner performs much better than no preconditioner.
However, the diagonal preconditioner generally requires 5–15% more matrix-vector products
than does the block Jacobi preconditioner.

The reordering can significantly reduce the time taken to solve the entire problem; the
amount of the reduction is machine and problem dependent. Figure 5 presents the sparsity
pattern for the Hessian matrix of the original and reordered meshes for the ductbig problem.
For this mesh, the reduction in total solution time realized by reordering the vertices and
elements was over 43%. The reason for this improvement is that most of the computational
time for the inexact Newton code is in the Hessian evaluation and matrix-vector products,
where locality of reference has a large impact. On the rand10000 mesh, the reduction in
total time was over 40%. The inexact Newton method on the reordered mesh performs fewer
function evaluations and conjugate gradient iterations than on the original mesh, accounting
for some of this large decrease in total time. The reduction in time due to reordering on
the other meshes is hard to quantify because the total time for solving the original and
reordered meshes differs by only a few hundredths of a second. The cost of computing the
reordering, however, may dominate the savings in the linear algebra, leading to an increase
in total time. Such increases are realized when solving the test problems with fewer than
1,500 variables.

Having developed an AMPL model to solve the mesh shape-quality optimization problem
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Figure 5: Sparsity pattern of the Hessian matrix for the ductbig mesh with original ordering
(left) and the breadth-first search ordering (right).

and written a special-purpose code to solve the same problem, we now compare the two
in order to quantify the effects on solution times and memory requirements. Two AMPL
models were written for these tests: one is a constrained version of the optimization problem,
and the other is an unconstrained formulation. The denominator in both AMPL models
is computed by multiplying det(A) by the constant term 2det(W−1). This modification
does not affect the optimization problem, but reduces the amount of memory consumed by
AMPL and the general-purpose solvers when optimizing the problem. Furthermore, two
versions of each mesh were used for these numerical results; the original mesh is in the
order provided by the meshing package, and a symmetric permutation has been applied in
the reordered mesh, where the vertex and element ordering was calculated by the inexact
Newton code. Both AMPL models and all the test meshes are available for download from
http://www.mcs.anl.gov/~tmunson/models. Versions of these models are also available
in the COPS 3.0 test set [13].

KNITRO 3.0 [41] and LOQO 6.06 [39] were used to solve the constrained formulation;
and LOQO, KNITRO, and TRON [25] were used to solve the unconstrained problems. All
of these solvers use exact Hessian matrices and were run with their default settings. Each
solve was attempted three times, with the minimum time taken over these runs reported.
The time command was used to obtain the clock time from start to finish for the particular
codes, and the user time is reported.

The time for the general-purpose algorithms includes the time taken by AMPL to read
the model and data files, generate the problem, and read the solution file produced by the
solver. The optimized mesh was not written to disk for the AMPL models, and the time
to reorder the mesh is not included, since this calculation was performed exogenously. The
time for the inexact Newton method includes reading the mesh, computing the sparsity
pattern for the Hessian, solving the problem, and writing the optimized mesh to disk. The
cost of computing the reordering for the mesh is included in the total time for the inexact
Newton method when a reordering was used.

Table 2 reports the time taken in seconds to solve the original and reordered problems
using the constrained formulation, while Table 3 reports the time taken in seconds on the
unconstrained formulation. These tables also report the amount of RAM used by the codes
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Table 2: Results for meshes when using the constrained AMPL model.
Mesh Ordering LOQO KNITRO Inexact Newton
deer Original † 1.25 0.05

Reordered † 1.12 0.04
turtle Original 33.59 4.33 0.14

Reordered † 4.00 0.12
rand1000 Original 12.79 ‡ 0.18

Reordered 2.76 ‡ 0.16
rand10000 Original 80.95 ‡ 7.44

Reordered 57.05 ‡ 4.43
foam5 Original 6.53 4.70 0.10

Reordered 6.11 4.50 0.12
gear Original 3.75 4.28 0.07

Reordered 3.45 4.00 0.07
hook Original 8.86 7.25 0.10

Reordered 8.79 6.99 0.11
duct20 Original 11.63 6.12 0.09

Reordered 10.42 5.64 0.07
duct15 Original 41.65 16.59 0.23

Reordered 28.01 15.22 0.21
duct12 Original 112.00 (435 MB) 61.20 (443 MB) 0.58 (3.4 MB)

Reordered 79.80 (426 MB) 51.94 (434 MB) 0.48 (3.5 MB)
ductbig Original ( ( 86.28 (175 MB)

Reordered ( ( 48.61 (180 MB)
† Iteration limit reached. ‡Current solution could not be improved. (Ran out of memory.

Table 3: Results for meshes when using the unconstrained AMPL model.
Mesh Ordering LOQO KNITRO TRON Inexact Newton
deer Original 1.31 0.59 0.76 0.05

Reordered 1.21 0.55 0.60 0.04
turtle Original 2.43 1.76 2.11 0.14

Reordered 2.20 1.61 1.73 0.12
rand1000 Original 2.95 † † 0.18

Reordered 2.44 † † 0.16
rand10000 Original 49.21 † † 7.44

Reordered 42.78 † † 4.43
foam5 Original 4.51 2.87 2.79 0.10

Reordered 4.45 ‡ 2.72 0.12
gear Original 2.59 ‡ 2.60 0.07

Reordered 2.48 ‡ 2.31 0.07
hook Original 8.71 3.30 3.82 0.10

Reordered 7.27 3.23 3.73 0.11
duct20 Original 16.15 3.50 4.02 0.09

Reordered 16.00 3.20 3.37 0.07
duct15 Original 40.42 9.27 10.74 0.23

Reordered 38.75 8.39 9.78 0.21
duct12 Original 127.93 (375 MB) † 29.20 (369 MB) 0.58 (3.4 MB)

Reordered 134.06 (374 MB) † 24.20 (367 MB) 0.48 (3.5 MB)
ductbig Original ( ( ( 86.28 (175 MB)

Reordered ( ( ( 48.61 (180 MB)
†Function undefined. ‡Current solution could not be improved. (Ran out of memory.
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for the duct12 and ductbig problems. Note that KNITRO and TRON compute a trial point
where the objective function is undefined for some of the unconstrained problems. Their
AMPL links report an error instead of returning a domain violation or plus infinity for the
objective function value.

These results demonstrate, as expected, that using a special-purpose code can be sig-
nificantly faster than using a general-purpose algorithm within a modeling environment
and can require fewer memory resources. For example, on the duct12 problem, the TRON
algorithm on the unconstrained formulation with the reordered mesh computed an optimal
solution in the shortest amount of time. However, this solve took over 50 times longer to
compute a solution than did the special-purpose code and consumed more than 100 times
the memory. The other solvers were over 100 times slower or encountered a failure. In gen-
eral, using a general-purpose solver from within AMPL is approximately 9.5 to 275 times
slower than using the special-purpose code over all of the test meshes and formulations for
the shape-quality optimization problem. Moreover, the general-purpose codes can fail to
remain feasible on the constrained optimization problems even though they are started from
a feasible point, particularly on the triangular meshes.

A more surprising outcome is the effect that applying a symmetric permutation to the
optimization problem can have on the general-purpose solvers. Algorithms, such as LOQO,
that apply direct methods to compute the directions may not see any benefit from applying
the permutation because the factorization routine should reorder the matrices for sparsity.
However, the permutation effects may be more pronounced for solvers, such as TRON, that
rely on iterative techniques to compute the directions, because of better locality of reference
in the matrix-vector products.

In general, the breadth-first search ordering reduces the time to compute a solution by
all of the general-purpose codes tested. One of the reasons for this outcome is that the
permutation can reduce the amount of time taken by the AMPL solver library to compute
the function, gradient, and Hessian evaluations. Sometimes the result is dramatic because
of large fluctuations in the total number of iterations taken to solve the two problems. The
most extreme case observed is when the solver fails to compute a solution for the reordered
problem but succeeds for the original ordering of the same problem, such as LOQO on the
turtle mesh and KNITRO on the foam5 mesh.

TRON derives a consistent improvement in solution time from the reordering; the least
improvement is a 2.35% reduction in time on the hook mesh, while the maximum is a 21%
reduction on the deer mesh. KNITRO also obtains some improvements in solution time,
although the reduction in time is generally under 10%. In particular, the least improvement
in time for KNITRO is a reduction of 2% on the unconstrained formulation of the hook
mesh, while the best is a 15% reduction on the constrained formulation of the duct12 mesh.

The effect of the reordering on LOQO is hard to quantify. LOQO experiences a 78%
improvement in solution time on the constrained version of the rand1000 mesh, primarily
because of a significant reduction in the number of iterations taken to solve the problem.
The same situation arises on the rand10000 mesh. On several meshes, the reduction in time
is under 1%. Furthermore, the reordered problem takes longer to solve than the original
problem for the unconstrained version of the duct12 mesh when using LOQO.
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6 Conclusion

The mesh shape-quality optimization problem is an application where performance is crit-
ical, especially when r-refinement is used in conjunction with an adaptive scheme or when
the mesh changes through time. The savings in memory and computational time by using
a special-purpose algorithm versus using a general-purpose algorithm within a modeling
language can be large. In particular, the general-purpose algorithms are between 9.5 and
100 times slower when used through the AMPL modeling language than the special-purpose
code on our optimization problems and can consume over 100 times the memory.

To improve the performance of the special-purpose code, we used a block Jacobi pre-
conditioner within the conjugate gradient method. We proved that this preconditioner is
positive definite by applying a theorem on the convexity of fractional functions to the in-
verse mean-ratio metric and showing that the appropriate components of the Hessian matrix
are invertible. The theorem on the convexity of fraction functions may be useful in other
situations and for different quality metrics.

The results obtained from applying a symmetric permutation to the optimization prob-
lem were surprising; this modification can increase or decrease the number of iterations
taken to solve the problem, and the algorithms can even fail to solve the permuted model.
However, the reordering generally reduces the total time required to compute a solution.
These observations may be useful in improving the efficiency and robustness of general-
purpose algorithms.
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